The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors

نویسندگان

  • Shmuel Friedland
  • Giorgio Ottaviani
چکیده

In this paper we discuss the notion of singular vector tuples of a complex valued d-mode tensor of dimension m1 × . . . × md. We show that a generic tensor has a finite number of singular vector tuples, viewed as points in the corresponding Segre product. We give the formula for the number of singular vector tuples. We show similar results for tensors with partial symmetry. We give analogous results for the homogeneous pencil eigenvalue problem for cubic tensors, i.e. m1 = . . . = md. We show uniqueness of best approximations for almost all real tensors in the following cases: rank one approximation; rank one approximation for partially symmetric tensors (this approximation is also partially symmetric); rank-(r1, . . . , rd) approximation for d-mode tensors. 2010 Mathematics Subject Classification. 14D21, 15A18, 15A69, 65D15, 65H10, 65K05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Krylov-type methods for tensor computations I

Several Krylov-type procedures are introduced that generalize matrix Krylov methods for tensor computations. They are denoted minimal Krylov recursion, maximal Krylov recursion, and contracted tensor product Krylov recursion. It is proved that, for a given tensor A with multilinear rank-(p, q, r), the minimal Krylov recursion extracts the correct subspaces associated to the tensor in p+ q+r num...

متن کامل

On best rank one approximation of tensors

Today, compact and reduced data representations using low rank data approximation are common to represent high-dimensional data sets in many application areas as for example genomics, multimedia, quantum chemistry, social networks or visualization. In order to produce such low rank data representations, the input data is typically approximated by so-called alternating least squares (ALS) algori...

متن کامل

Best subspace tensor approximations

In many applications such as data compression, imaging or genomic data analysis, it is important to approximate a given tensor by a tensor that is sparsely representable. For matrices, i.e. 2-tensors, such a representation can be obtained via the singular value decomposition which allows to compute the best rank k approximations. For t-tensors with t > 2 many generalizations of the singular val...

متن کامل

The Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points

In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.

متن کامل

Fast low rank approximations of matrices and tensors

In many applications such as data compression, imaging or genomic data analysis, it is important to approximate a given m × n matrix A by a matrix B of rank at most k which is much smaller than m and n. The best rank k approximation can be determined via the singular value decomposition which, however, has prohibitively high computational complexity and storage requirements for very large m and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014